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Basic Properties of Subharmonic Injection Locking

LENNART GUSTAFSSON, K. INGEMAR LUNDSTROM, anp G. H. BERTIL HANSSON

Abstract—~Basic properties of subharmonic injection locking, as
well as differences between subharmonic and fundamental injection
locking, are studied with the describing function technique.

The consequences of including a nonlinear capacitance as well as
linear frequency-dependent parameters in the active element is in~
vestigated. The importance of the broad-band characteristics of the
tuning circuit is studied. The detailed analysis is given for locking
to the third subharmonic, but necessary expressions for generalizing
the treatment to other than third subharmonic locking are provided.
Finally, a note on stability of subharmonic locking is given.

1. INTRODUCTION

UBHARMONIC phase locking of oscillators employ-
S ing negative conductance elements such as avalanche

and Gunn diodes has received much attention during the
last few years [1]~[3]. The advantage of this technique over
fundamental phase locking is obvious—varactor upmultipli-
cation of the locking signal can be reduced or eliminated.

It has been shown possible to lock oscillators with an in-
jected signal, the frequency of which is a submultiple of the
free-running frequency. Earlier theoretical explanations of the
behavior of subharmonically locked oscillators have mainly
been based on an Adler type of treatment, using Van der
Pol’s equation as a starting point [4]. In a recent paper [5],
subharmonic locking was treated in some detail, but that
paper contains fundamental errors that led the authors to
incorrect conclusions.

Subharmonic phase locking is, of course, related to har-
monic phase locking. The problem of harmonically locked
double-tuned oscillators has been studied by Cullen [6] and
Markowski [7]. Some of our results in Sections V and VI
therefore parallel some of those given in [6], [7].

The purpose of this paper is to study in detail a few cases
of subharmonic locking. In this context, the basic properties of
subharmonic phase locking as well as the basic differences
between fundamental and subharmonic phase locking will be
discussed.

II. SuBHARMONIC PHASE LOCKING: GENERAL EXPRESSIONS

The oscillator is represented by the model shown in Fig. 1.
The tuning circuit that is assumed to be nondissipative is
represented by its voltage~current transmission matrix. With
the notations of Fig. 1 we have

<V1k> _ (Tu(kék)) Tm(k(d)) (Vzk) (1>
Ilk Tz](kw) ng(kw) I2k

where the index & denotes the kth frequency component (these
components must not necessarily be harmonically related).
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Fig. 1. Circulator-coupled negative nonlinear element,

Gy is the load of the oscillator and Pj, is the injected power-
The nonlinear active element is represented by its describ-
ing functions [8], denoted Ni, one for each frequency com-
ponent, In this study the describing functions will have the
dimension mho; they can be regarded as nonlinear admit-
tances of the active element. It is easily seen [8] that the
stationary state of the oscillator is determined by the follow-
ing theoretically infinite set of equations:

GrT12(0) F Toa(w) 1 I, " 1 @
=— ¢/
! GrT11(w)+ T o (w) Ay GrT1(w)+ T o (w)
GLle(kw) + Tm(kw)
+1=0, k=1 3
* G T11(kw) - To1(kw) ¥

where 41 is l Val, I. is a current source that is related to Piq
[see (24)], and 8 is the phase angle between that current
source and V.

Equations (2) and (3) will be developed in detail in the
following sections; they form the basis for the entire study.

III. LocKING TO THE THIRD SUBHARMONIC: THE
SINGLE-TUNED OSCILLATOR

In this section we study an oscillator, the tuning circuit of
which is a simple parallel LC circuit. In this case,

GLTlg(kaJ) + ng(kw) 1 (4:)

GLTn(kw) —I— Tzl(kw) = GL —I—](ka - l/kwL) (5)

I

The nonlinear active element is first assumed to obey the
relation

(1) = aw(®) + a323@). (6)

The consequences of not including a second-order term, i.e.,
aw?(t), are discussed below.

When locking to the third subharmonic we assume that
only two frequency components: w, which is the frequency of
the injected signal, and 3w, where 3w= w,, the free-running
frequency, are present in (). Considering the damping 'prop-
erties of normal tuning circuits, this is a realistic assumption.
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We can thus write
v(f) = Aqsin (wi + ¢1) + A3 sin 3wt (7)

and easily obtain the describing functions (see [9], [10])

3
Ny=a + Zas(z‘hz — A1 de 1 4 2A32) (8)

3 1 43
N3 d1+zdg 2A12—§ 'A—e]3¢1+A32 . (9)

3

The qualitative differences between fundamental and sub-
harmonic phase locking are easily illustrated by writing

3. 42 1
(o + 30, 4% = §(30C — 1/3wL) +

I, 1
= — ¥ ; (10)
A Gr + §j(3«C — 1/3wL)

for fundamental locking, where power is injected at 3w and no
component is present at w and

1

a1 +3a;(A2— A1 Aze 3014242 1

[a1+5as(4,y 14 3e +24%)] GL+j(wC—1/wL)+
I, | 1

=2 o _ (11)

A1 GL—I—](wC—l/wL)

[ +3 <2A 5 1 A13 j3¢l+A 2>}

4Gt a _— -
1 4 3 1 3 A, 4 ’3

1
" Gut+i(30C—1/3wL)

+1=0 (12)

for subharmonic locking.

The describing function a1+ (3/4)a;A? in (10) does not
qualitatively change when power is injected at 3w. The imagi-
nary part in the left-hand side (LHS) of (10), introduced by
the tuning circuit at frequencies 3w#wq, is balanced by the
term in the right-hand side (RHS), representing the injected
power. The describing function in (12), on the other hand,
changes qualitatively as power is injected at w, and thereby
A1 is introduced. Two terms containing 4, are added; it is the
complex term that balances the imaginary component from
the tuning circuit. The balancing terms in (10) and (12) are
thus qualitatively different, and this will establish a basic
difference between fundamental and subharmonic locking.

We also see qualitatively that fundamental locking is more
efficient for small injected powers than subharmonic locking—
the “balancing” term in (10) contains an amplitude I, related
to the injected power, whereas the “balancing” term in (12)
contains an amplitude A: related, although not directly, to
the injected power, raised to the third order. Quantitative
results will be given below.

There is another feature of subharmonic locking evident
from (11) and (12): if I., and thereby 41, is increased to en-
large the locking bandwidth, the amplitude 4 at the desired
output frequency 3w will decrease. Quantitative results will
be given below.

Having thus pointed out some basic properties of sub-
harmonic locking we will give a quantitative analysis. In order

29

to include the influence of capacitive nonlinearities we intro-
duce a term dv3(f)/df; this is the least-order term that will
influence locking to the third subharmonic:

dv3(1)

i) = aw() + asv3() + 3 7

. (13)

The asin (8) and (9) are replaced by as+jwes and a3+ 73wes,
respectively. The same alterations are made in (11) and (12).
The linear capacitance of the active element is included into
the tuning circuit capacitance,

For a free-running oscillator, i.e., 4y (and I,) =0, we have,
with 3w= wa,

a; + %(as +jwoCs)A302 + G +fwoc

. (1 _
If we introduce go= —a1/Gyr, go= (3/4)as/GL, ba=3¢3/4Gr, and
woo?=1/LC we find

> =0. (14)

wozLC

—1
Ay = & (15)
§e
and

w, 2
wp? = @ (16)

b:G1

14 Asp?

If ba((go—1)Gr/g2) < C, the free-running frequency is close to
&00-

If we remember that for normal phase locking of oscillators
| Aw| «wo, where 3w—wo=Acw, (11) and (12) (with ¢ included)
may be written as

I,
g2l s0® = cos @
1Gr
oy 5L dno (11b)
—Qy - = sin
"3 A6
and, with 4s?= 43s24+A44%,
A 4 2p0dp 4o A
g2 3 8241 3 Au
- (—g2 €05 31 + wobssin 3¢1) = 0
Aw 1 A13 .
2 —— Qo — = — (g2 sin 3¢1 + wob2 cos 3¢1)
Wy 3 Ay
+ wobs(2A 2+ Adg) = 0 (12b)
where
C boG
(= A) an
G C
weC 7 b,G
QOI = OL < g _ZC—E A302> (18)

and Qo is the effective external @ value for the free-running
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oscillator. From (11b) and (15) we obtain

I, 1

8 3 2
G:0s 4/ 1+ (800, (&~ 1)

or, since go— 1=~ 1 (for an optimum loaded free-running oscil-
lator go—1=1) and Qg is typically of an order 5~10,

A1 = (19)

I,

(o)

which also means that the phase angle 8 is close to —90°.

We are generally interested in the locking bandwidth, i.e.,
twice the maximum frequency deviation (3w—wo) obtainable.
From (12b) we find that this requires 3¢:= +90° (which can
be found by substituting A4;? obtained from the first equa-
tion in (12b) into the second and calculating the maximum of
Aw with respect to 3¢1, keeping 4 constant). We then obtain
at Awmax,

AAd? = —242 F—- — —— = —24,2 20

3 1 3 A o 1 ( )

Awmax _ ——‘1— ff(gzz + (wob2)2>. (21)
wWo 6Q0 Aso g2

Equation (21) shows that the frequency deviation obtain-
able by subharmonic locking is symmetrical around ws in con-
trast to the resultin [5], where, however, the change in ampli-
tude at 3w was neglected. We see that by setting A4;2=0 in
(12b) we would also obtain an unsymmetrical frequency
deviation. Another source of error in [53] is the deviation of
[5, eq. (1)], which is valid only for the fundamental fre-
quency and thus cannot be used when two frequencies exist
simultaneously; thus, e.g., [5, eq. (6)] is incorrect.

Here we draw the conclusion that the nonlinear capaci-
tance does not cause an unsymmetrical locking range (for
small injected powers) as claimed in [5], but only changes the
effective Q values of the circuit.

We note that (20) is approximately valid also for IAw]
< |Awmax| and combining (19b) and (20) we obtain an expres-
sion for the decrease in RF amplitude close to wo, when the
injected power is increased:

12

8\
(o)

It was given above as a qualitative result that the ampli-
tude 43 will decrease if the injected current I, is increased.
The mechanism behind this can be briefly explained as fol-
lows: as power is injected at w, and thereby the amplitude 4,
is introduced, this amplitude will give a positive contribution
to the conductance of the active element at 3w. This positive
contribution will necessitate a decrease in the amplitude at 3w
in order that the total conductance of the active element at
3w remains constant, and thereby an oscillation at 3w can be
maintained. This is true as long as 4, is small so that the cubic
term in A4, can be neglected.

Adg ~ —2 (22)

From (19b) and (21) we obtain

A 1,%(g0 bs)?
Aw _ (g2® + (wod2)?) _ (23)
W0 | max 8 8

6Q Qo'g GrgaAds

For a circulator-coupled oscillator, the equivalent injected
current I, is related to the injected power P;, by

I, = /8Pi,Gt (24)
and we get

Aw

Wo

(go — 1)

()Y o

In [5] a similar expression was derived with another, incor-
rect, numerical coefficient.

For comparison, we give those expressions for fundamental
locking that correspond to (22) and (25); they are, from

[11], [12]

B 9
max h 128Q0(Q01) 8

Ie wobz 1
AA*= F e (26)
GrLAy g Vg + we?be?
A mMax 7"’" b z Pin /2
Gmax Ve T (o)’ ( ) . @7
Wy Qog2 Py

As seen from (26) there is no change in RF voltage if the non-
linear capacitance is absent, i.e., by=0 [(26) and (27) are, of
course, valid only for small frequency deviationsj.

In those cases where the subharmonic power is not in-
jected through a circulator, but, e.g., like in [13] through the
bias circuit, an appropriate relation between I, and the in-
jected power Pj, should replace (24).

Finally, it should be noticed that the unsymmetrical lock-
ing properties seen experimentally [5] cannot be explained
by assuming a more general tuning network; they can, how-
ever, be accounted for by including a second-order term
a2?({) in the nonlinear active element and including mixed
frequencies at 2w and 4w; in fact, a nonlinear capacitance is
not necessary for obtaining unsymmetrical locking proper-
ties. Another possible explanation is the use of a nonideal
dc source (i.e., a dc-bias circuit having R=0). These prob-
lems will be dealt with in [14].

IV. LOCKING TO THE THIRD SUBHARMONIC: BROAD-BAND
PROPERTIES OF THE AcTIVE ELEMENT

We have so far employed a rather special nonlinear de-

vice. Generally,
d"v)
C oy
a

) = f < dv d%
(1) = Uy, — PR

Cdt de
which gives rise to frequency dependent conductances and
capacitances (in case the model should include nonlinear in-
ductances, integrals of » should be introduced into the argu-
ment of f). After a series expansion of Z(¥), the describing
functions can be calculated, and thus this general case may
also be dealt with. The frequency dependence of the device
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characteristic is important for the subharmonic locking
properties, and to demonstrate this we will treat here a very
simple case, namely a frequency-dependent linear part of the
conductance and capacitance of the active element, which
is given by the first-order terms in even and odd derivatives,
respectively. Since we treat a linear term no mixing between
frequencies will occur, which means that we can introduce
different linear conductances and capacitances on w and 3w.
At 3w we assume g, and C as before and at w:

a1(w) = aGr and C(w) = vC (28)

where o and v describe the frequency dependence (the
capacitance of both the active element itself and of the
tuning circuit are incorporated into C).

If we insert this into the describing functions for 3w and
w, assuming by=0 (i.e., neglecting the nonlinear capacitance),
we find that the only change is in 4;, which now is given by

31

3% GHz 10 GHz
conductance mmho ~=—0.1 ~—09
susceptance mmho ~ —128§ = 2.5

If we want go=2, we must choose G =0.45-10"3 and we
then obtain Q¢=5.6. From the above table we calculate
a=—0.2 and y= —30.

If we insert these values into (30) we see that the locking
bandwidth is about 2 percent of that obtained for a circuit
where the small signal parameters are considered to be con-
stant.

This figure could of course be increased by using a tuning
circuit with a capacitance that dominated over the device
capacitance, but this would be of no value since the Qq value
of the oscillator would also increase, and therefore the locking
bandwidth would decrease.

The frequency dependence of the device parameters is of

I,
A, = - 29
1 QO l — ‘ 1 2 i ( )
G — T4 (2g0 + @ — 1)2
Q0" \9 — v
and hence the locking bandwidth will be
““““““ 2 3
oy Yo )
< + 50, (8o )
= (30)

19—v!3<4/1+<

of that obtained for a frequency-independent conductance
and capacitance. Fig. 2 shows the change in normalized lock-
ing bandwidth as a function of a for two different Qo
values with y=1 and go=2. Fig. 3 shows the normalized
locking bandwidth versus ¥ with a as a parameter (Qo= 10
and go=2). Figs. 2 and 3 show that the frequency dependence
of the admittance of the active element can change the lock-
ing bandwidth considerably. In order to calculate the largest
possible consequences that this frequency dependence can
have, we assume for the remainder of this section that the
tuning circuit is purely inductive. As a practical example we
take an IMPATT diode that has a small signal admittance given
in the Read approximation as [15]

o )

little importance for the fundamental locking properties, and
this is a basic difference between fundamental and subhar-
monic phase locking. It should also be noted that the charac-
teristics of the circulator are likely not to be the same at w as
at 3w. These differences could be treated in a way analogous
to the above; as a matter of fact, the frequency changes in
both the circulator and the active element can be incor-
porated into the a and ¥ parameters introduced in (28).

V. LOCKING TO THE THIRD SUBHARMONIC:
THE DoUBLE-TUNED OSCILLATOR

The single-tuned oscillator treated in Sections II1 and IV
is of course the simplest possible oscillator. We will now in-

1 — cos s 1 L aC (1 1 sin 0,1)
wCy —————————— @ - —
R T Rt S S (31)
. 2 1 < 1 cos 6, _ )
14+ — — 04 sin 6,4
02 1 — 0w? \1— «?/w,’ 1 — 0?/w,?

where w, is the avalanche frequency, 6; is the drift angle, and
Cs is the geometrical capacitance of the drift region. Assum-
ing 0;(3w) =, 3w=1.2 w,, and go=2, we finda=7.5,y=0.44,
and a locking bandwidth 67 percent of that obtained using a
frequency-independent device admittance.

As another even more striking example, we can extra-
polate slightly the measurements of the small signal parame-
ters for a p-i-n diode, made by Josenhans and Misawa [16]*
to yield the following:

! The extrapolations were made from curves published in Microwave
Semiconductor Devices and Theiv Civcuit Applicaiions, H. A. Watson, Ed.
New Vork: McGraw-Hill, 1968,

vestigate the advantage in locking properties that can be ob-
tained by shaping the linear tuning circuit. We will employ
a double-tuned circuit, resonant close to w as well as close to
3w (see Fig. 4). For the purpose of this section it is advan-
tageous to use the simplest possible nonlinear active element,
as defined in (6).

For small deviations from the free-running frequency we
have

GLT12(0J) —|— TQQ((IJ) = GLle(Sw) + T“(Sw) =1 (32&)
GrT1(w) + Tulw) = G + j(wCy — 1/wLy) (32b)
GrT11(3w) + T91(3w) = Gr + j(3wCs — 1/3wL3) (32¢)
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K
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Qp=10
054
Qo=5
0

2 0 2 4 6 8 w0 %

Fig. 2. Normalized locking bandwidth K versus o; « is defined by (28)
and K by (30). « describes the frequency dependence of thelinear part
of the device conductance, A frequency-independent linear capaci-
tance (y=1) and go=2 were assumed.

K
-2
a=2
2
14
0 .
3 2 -1 0 1 2 3 ¥

Fig. 3. Normalized locking bandwidth K versus -y for two

« values: Qo=10 and go=2.

Q
G Ly
. U
O

Fig. 4. Double-tuned circuit wig?=1/L1C1; 3202 =1/L;Cs.

where

1
LgCg

9

N
TR Wt =

and Ow? = OJ302 =
i1

Furthermore, we have to observe that in order to avoid
hopping effects or multiple-frequency oscillations, the circuit
should be passive at the frequency w. Since a practical device
often has a frequency-dependent negative conductance {com-
pare an IMPATT diode) this is a fair assumption. Note that
for a single-tuned oscillator we did not have to make this as-
sumption since the linear network anyhow strongly damped
any oscillations on the frequency w. For simplicity we assume

Au_)max3l'd ) _Pl.

fun

AW

024 max n

015

ol

00s

40 12 3 4 5 &

Fig. 5. Subharmonic locking bandwidth (third subharmonic) for a

w double-tuned circuit divided by fundamental locking bandwidth

8 versus o assuming the same amount of injected power in the two

g’ cases. The curve shown is normalized by (Pin/Pg). Furthermore,
£o=2 was assumed.

that the conductance of the active element on frequency w is
aGr (a>—1).

If we assume 4,430 we find in the same way as before
that

I,

- 33
GL(Zgo -1+ Ol) ( )

Ax
and that cos 8= 1, i.e., 8= 0° in this case (compare sin =~ —1
for the single-tuned circuit). 4: given by (33) may be inserted
directly into (21) setting by=0. A more accurate expression

than (19) for 4, in a single-tuned oscillator, with a; replaced
by aGy, is the following:

I,

GrQo 2[1 + (é%é)z(zgo + o~ 1)2le

where we have chosen by =0.
We find from (21) by comparing (33) with (19¢) that

4y = (19¢)

8 2 3/2
Aw double tuned QO g
@y | max Zgo + o 1
Aw single tuned
— (34)
@y [max

Equation (34) shows the gain in locking bandwidth ob-
tained with a double-tuned circuit. It is seen that the larger
the passive conductance at the subharmonic frequency (i.e.,
the larger ), the smaller the gain.

It is obvious that a double-tuned circuit increases the
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locking bandwidth appreciably at subharmonic locking for a
given injected power Pip.

It is also interesting to compare locking to the third sub-
harmonic through a double-tuned circuit with fundamental
locking, assuming the same amount of injected power in the
two cases. From (27) and (33), (21) and (15), respectively, we

obtain, with by;=0,
Pin?)rd 3/2
()

Awmax&d sub 4(g0 — 1)
Avmax™  3(2g0 + a — 1)3
-PO 1/2
() @

Py

if the same amount of injected power is assumed in the two
cases. Equation (35) is illustrated in Fig. 5.

where

(Pin3rd/PO)3/2(P0/Pinfun) 1/2 =

VI. LOCKING TO THE #TH SUBHARMONIC

The basic properties of subharmonic locking which were
discussed in the preceding sections for the case n=3 also
hold for #>>3; they are only more pronounced.

Assuming an active element obeying the relation

33

VII. StaBIiLiTY CONSIDERATIONS

Stability without restrictions regarding {requency devia-
tion and injected power can be investigated in a way similar
to that discussed for fundamental locking in [8], but with
much greater numerical difficulties.

Here we will discuss stability for a case with small fre-
quency deviation and small injected power; the oscillator is
locked with the nth subharmonic. We first assume that a
stationary solution is given by

NadGrtj2—— —
L J @ Q

We introduce the notation ¢ for n¢; for this stationary
solution. We then perturb the solution slightly so that at
t=0 we have ¢ =¢o+A¢. If we introduce this phase into (40)
we will get an equation, the real part of which is almost
identically the same as when ¢ =¢,, but with an imaginary
part that is substantially changed. We easily find the dif-
ference in the imaginary part, to the first approximation, in-
troduced by A¢ to be given by

A A
ot 27100GL An

(40)

—a,

we(—1)"=D12 cos ppAp.  (41)

If the original solution of (40) is to be stable, then evidently

. n the perturbation is to decrease with time, and thus 8A¢/dt has

i(t) = Z apvt(t) (36)  to have the opposite sign of A¢. This leads to the condition

k=1
—1)(n—1/2
and assuming (=D cos ¢o > 0 (42)
v(t) = Ayrsin (0 + ¢1) + A, sin nowt (37) for a stable solution, i.e.,
we employ the binomial theorem and the formulas for expan- T < o < 3_1r (43)
sion of sin® x and cos™ x [17] to find the describing functions 2 2
1\ 5—1
k! <—> A4,
n k-1 2 IL(— 1)(‘n—1)/2
N, = Z @ — A2 A e (38)
k=1 p=0 <k—p+1>,<k—p—1>'<p>l<p>' 2n—l
P even 2 . 2 . 2 . 2 .
1 k—1
k! <—) Afr 4,1
n k 2 (_1)(n—1)/2 A4 )
No=2 a2, — L ginen, (39)
SIE GG e o
p odd _ iy — )y — ]!
2 2 2 2

For small injected power, i.e., A; small, we need to retain for n=23, and
terms in N, containing 4; up to the second order only, plus — r
the last term, since this is the only complex term, the balanc- — Ly < = (44)
ing term when nw#wo. 2 2

Itis to be noted that if a,= 0, no locking takes place unless
frequency components in v(f) other than w and #w are in-
cluded in the analysis, introducing other complex terms in
N,. This locking mechanism is, however, extremely inefficient
unless multiple-tuned circuits (e.g., resonant for w, 3w, and
9w, if n=9) are used, and this possibility may therefore be
neglected.

Expressions for maximum locking bandwidth, etc., can
be obtained in much the same way as for the case n=3.

for n=>5.
VIII. CONCLUSIONS

Subharmonic injection locking is attractive since up-
multiplication of the locking signal can be reduced in order
or even avoided. There are, however, (as shown in this paper)
basic differences between fundamental and subharmonic in-
jection locking that make the latter less eficient. This makes
subharmonic locking feasible for applications where band-
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width is of little importance. The possibility of shifting the
free-running frequency (through varactor tuning) in ap-
proximate synchronization with the change in frequency of
the injected signal has not been investigated for subharmonic
injection locking in this paper; with such a method, injection
locking would provide only a part of the locking mechanism
and locking bandwidth could be increased. The theory pre-
sented in this paper would be valid for that part of the
locking that can be attributed to injection locking.
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Microstrip Dispersion Model

WILLIAM ]J. GETSINGER

Abstract—The assumption that the quasi~-TEM mode on micro-
strip is primarily a single longitudinal-section electric (LSE) mode
leads to a transmission line model whose dispersion behavior can be
analyzed and related to that of microstrip. Appropriate approxima-
tions yield simple, closed-form expressions that allow slide-rule
prediction of microstrip dispersion.

NOMENCLATURE

a, ', b, b, s, w Mechanical dimensions of conventional
L 'microstrip and the LSE mode model (Fig. 2).

; : t

s .| Speed of light in free space=11.8 in/us.

c’ Capacitance per unit length of microstrip
line at zero frequency.

D Width of the zero-frequency parallel-plate
microstrip equivalent structure.

I Frequency.

fi Frequency of inflection of the dispersion
curve.

fo Parameter of the dispersion function.

G Empirical parameter used to simplify the
microstrip dispersion function.

k, Free-space wavenumber.
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[17] M. R. Spiegel, Mathematical Handbook of Formulas and Tables. New
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L Inductance per unit length of microstrip line
at zero frequency.

Zs Microstrip characteristic impedance at fre-
quency f.

Zy Microstrip characteristic impedance at zero
frequency.

% Propagation constant along the microstrip
line.

Ya Transverse propagation constant in the air-
filled part of the microstrip model.

Vs Transverse propagation constant in the di-
electric-filled part of the microstrip model.

€ Microstrip effective dielectric constant (a
function of frequency).

€ Microstrip effective dielectric constant at
the inflection point.

€00 Microstrip effective dielectric constant at
zero frequency.

€ Permittivity of free space=28.85X10712
F/m.

€ Substrate relative dielectric constant.

Mo Impedance of free space =376.7 2.

Mo - Permeability of free space=231.92 nH/in, or

4w X107 H/m.
® Radian frequency.



