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Basic Properties of Subharmonic Injection Locking

LENNART GUSTAFSSON, K. INGEMAR LUNDSTROM, AND G. H. BERTIL HANSSON

Abstract—Basic properties of subharmonic injection locking, as
well as dtierences between subharmonic and fundamental injection
locking, are studied with the describing function technique.

The consequences of including a nonlinear capacitance as well as
linear frequency-dependent parameters in the active element is in-
vestigated. The importance of the broad-band characteristics of the
tuning circuit is studied. The detailed analysis is given for locking
to the third subharmonic, but necessary expressions for generalizing
the treatment to other than third subharmonic locking are provided.
Finally, a note on stab~lty of subharmonic locking is given.

I. INTRODUCTION

s

UBHARMONIC phase locking of oscillators employ-

ing negative conductance elements such as avalanche

and Gunn diodes has received much attention during the

last few years [1 ]-[3]. The advantage of this technique over

fundamental phase locking is obvious—varactor upmultipli-

cation of the locking signal can be reduced or eliminated.

It has been shown possible to lock oscillators with an in-

jected signal, the frequency of which is a submultiple of the

free-running frequency, Earlier theoretical explanations of the

behavior of subharmonically locked oscillators have mainly

been based on an Adler type of treatment, using Van der

Pol’s equation as a starting point [4]. In a recent paper [5],

subharmonic locking was treated in some detail, but that

paper contains fundamental errors that led the authors to

incorrect conclusions.

Subharmonic phase locking is, of course, related to har-

monic phase locking. The problem of harmonically locked

double-tuned oscillators has been studied by Cullen [6] and

Markowski [7]. Some of our results in Sections V and VI

therefore parallel some of those given in [6], [7].

The purpose of this paper is to study in detail a few cases

of subharmonic locking. In this context, the basic properties of

subharmonic phase locking as well as the basic differences

between fundamental and subharmonic phase locking will be

discussed.

II, SUBHARMONIC PHASE LOCKING: GENERAL EXPRESSIONS

The oscillator is represented by the model shown in Fig. 1.

The tuning circuit that is assumed to be nondissipative is

represented by its voltage-current transmission matrix. With

the notations of Fig. 1 we have

Vlk

()(

T,l(hr) Tl,(kcJ) V,k
—

Ilk – T,,(h) T,,(h) )( )Izh
(1)

where the index k denotes the kth frequency component (these

components must not necessarily be harmonically related).
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Fig. 1. Circulator-coupled negative nonlinear element.

GL is the load of the oscillator and Pin is the injected power.

The nonlinear active element is represented by its describ-

ing functions [8], denoted Nk, one for each frequency com-

ponent. In this study the describing functions will have the

dimension mho; they can be regarded as nonlinear admit-

tances of the active element. It is easily seen [8] that the

stationary state of the oscillator is determined by the follow-

ing theoretically infinite set of equations:

(3)

where A 1 is I VZI 1, I. is a current source that is related to Pin
[see (24)], and O is the phase angle between that current

source and VZ1.

Equations (2) and (3) will be developed in detail in the

following sections; they form the basis for the entire study.

III. LOCKING TO THE THIRD SUBHARMONIC: THE

SINGLE-TUNED OSCILLATOR

In this section we study an oscillator, the tuning circuit of

which is a simple parallel LC circuit. In this case,

G~T,@J) + Tz,(kw) = 1 (4)

GLTll(kco) + Tzl(k~) = GL + j(kwC – l/koL). (5)

The nonlinear active element is first assumed to obey the

relation

i(t) = alv(t) + a3v3(t). (6)

The consequences of not including a second-order term, i.e.,

a.zv2(t), are discussed below.

When locking to the third subharmonic we assume that

only two frequency components: a, which is the frequency of

the injected signal, and 30, where 3a= UO, the free-running

frequency, are present in v(t). Considering the damping ‘prop-

erties of normal tuning circuits, this is a realistic assumption.
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We can thus write

v(t) = Alsin (cot + @ + Assin3tit (7)

andeasily obtain thedescribing functions (see [9], [IO])

N1=a1+~a3(A12– Ad3e-~3’+’1+2A32) (8)

The qualitative differences between fundamental and sub-

harmonic phase locking are easily illustrated by writing

1
+1(al + ia3A2) ~L + j(3wC – l/3wL)

1. 1
. — eje (lo)

A GL + j(3cIJC – l/3uL)

for fundamental locking, where power is injected at 3W and no

component is present at w and

I. , 1
(11)

=11 “g GL+j(o-C– l/wL)

3

[(

1 A13
al+– aa 2A12—– — e~3~l+AJ2

4 3A3, )1
1

GL+j(3wC– l/3wL)
+1=0 (12)

for subharmonic locking.

The describing function al+ (3/4)ad 2 in (10) does not

qualitatively change when power is injected at 3Q. The imagi-

nary part in the left-hand side (LHS) of (10), introduced by

the tuning circuit at frequencies 3c0#coo, is balanced by the

term in the right-hand side (RHS), representing the injected

power. The describing function in (12), on the other hand,

changes qualitatively as power is injected at LO,and thereby

Al is introduced. Two terms containing Al are added; it is the

complex term that balances the imaginary component from

the tuning circuit. The balancing terms in (10) and (12) are

thus qualitatively different, and this will establish a basic

difference between fundamental and subharmonic locking.

We also see qualitatively that fundamental locking is more

efficient for small injected powers than subharmonic locking—

the “balancing” term in (10) contains an amplitude 1. related

to the injected power, whereas the “balancing” term in (12)

contains an amplitude A 1 related, although not directly, to

the injected power, raised to the third order. Quantitative

results will be given below.

There is another feature of subharmonic locking evident
from (II) and (12): if 18, and thereby Al, is increased to en-

large the locking bandwidth, the amplitude A 3 at the desired

output frequency 3c0 will decrease. Quantitative results will

be given below.

Having thus pointed out some basic properties of sub-

harmonic locking we will gi~e a quantitative analysis. In order

to include the influence of capacitive nonlinearities we intro-

duce a term CZV3(t)/dt; this is the least-order term that will

influence locking to the third subharmonic:

dv3(t)
i(t) = alv(t) + atv3(t) + c3 — o

dt
(13)

The at in (8) and (9) are replaced by a8+jc0c,I and ua-1-j3ucr,

respectively. The same alterations are made in (11) and (12).

The linear capacitance of the active element is included into

the tuning circuit capacitance,

For a free-running oscillator, i.e., A 1 (and 1,) = O, we have,

with 3W= UO,

al + ;(u3 + jCOoC3)it302 + GL + jLLIoC

“ka=o ’14)
If we introduce go= – a,/GL, g,= (3/4) as/GL, bz = 3ca/4GL, and

W002= l/LC we find

A309 = = (15)
g2

and

W002
~02 =

b,GL
l+— A 302

c

(16)

If b*((go– l)GL/gz) <<C, the free-running frequency is close to

woo.

If we remember that for normal phase locking of oscillators

[Awl <<COO,where 3w-oJo=Ati, (11) and (12) (with c, included)

may be written as

gzA302= 1’ Cos e
A lGL

_Qof: .> sin O
A lGL

(llb)

and, with Asz = AJOZ+AA82,

g,AAs2 + 2g,A12 + ~ x
3 A30

. (–g, cos 341 + wob~sin 34M)

and QO is the effective external Q value for the

=0

= O (12b)

(17)

(18)

free-running
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oscillator. From (Ilb) and (15) we obtain

1. 1
A, =

8—

((

(19)

G.Qo’ ; 1+ + (go – 1))2

or, since g~–1=1 (for anoptimum loaded free-running oscil-

later go– 1 =1) and Q. is typically of an order 5-10,

1.

A, =
8

()
GL Qo’~

(19b)

which also means that thephase angle ~is close to —90”.

We are generally interested in the locking bandwidth, i.e.,

twice themaximum frequency deviation (3c0-cOo) obtainable.

From (12b) we find that this requires 3@l= +90° (which can

be found by substituting AA 32obtained from the first equa-

tion in (12b) into the second and calculating the maximum of

Ati with respect to 341, keeping Al constant). We then obtain

at Aw~~x ,

1 A13 aobz
AAS2 = –2A12 T– — — = –2A1Z

3 A80 g2
(20)

Aam.. 1 A,3 g,2 + (~obz)’
—=i ——

6Qlj A30 ( )

(21)
~o g2 “

Equation (21) shows that the frequency deviation obtain-

able by subharmonic locking is symmetrical around uo in con-

trast to the result in [5], where, however, the change in ampli-

tude at 3W was neglected. We see that by setting AA 32= O in

(12b) we would also obtain an unsymmetrical frequency

deviation. Another source of error in [5] is the deviation of

[5, eq. (1)], which is valid only for the fundamental fre-

quency and thus cannot be used when two frequencies exist

simultaneously; thus, e.g., [5, eq. (6)] is incorrect.

Here we draw the conclusion that the nonlinear capaci-

tance does not cause an unsymmetrical locking range (for

small injected powers) as claimed in [5], but only changes the

effective Q values of the circuit.

We note that (20) is approximately valid also for IAw I

<lACO~aXl and combining (19b) and (2o) we obtain an expres-

sion for

injected

the decrease in RF amplitude close to OJO,when the

power is increased:

Ie,

AA82 z –2
82’

()

(22)

GL2 Qo’ ~

It was given above as a qualitative result that the ampli-

tude AS will decrease if the injected current 1. is increased.

The mechanism behind this can be briefly explained as fol-

lows: as power is injected at co, and thereby the amplitude Al

is introduced, this amplitude will give a positive contribution

to the conductance of the active element at 3u. This positive

contribution will necessitate a decrease in the amplitude at 3c0

in order that the total conductance of the active element at

30 remains constant, and thereby an oscillation at 3c0 can be

maintained. This is true as long as A ~is small so that the cubic

term in Al can be neglected,

From (19b) and (21) we obtain

AOJ Ie3(g22 + (aobJ2) .
——

@o max
83

()

6Q0 Qo’ ~ GL3g2A30

For a circulator-coupled oscillator, the equivalent

current I. is related to the injected power Pin by

Ie = ~8pinGL

and we get

(23)

injected

(24)

“(1+%3(-92‘2’)
In [5] a similar expression was derived with another, incor-

rect, numerical coefficient.

For comparison, we give those expressions for fundamental

locking that correspond to (22) and (25); they are, from

[11], [12]

Ie coobz 1
AA2 = T— —.

GLAO gz ~gz’ + tio2bJ2
(26)

(27)

As seen from (26) there is no change in RF voltage if the non-

linear capacitance is absent, i.e., b2= O [(26) and (27) are, of

course, valid only for small frequency deviations].

In those cases where the subharmonic power is not in-

jected through a circulator, but, e.g., like in [13] through the

bias circuit, an appropriate relation between I. and the in-

jected power Pin should replace (24).

Finally, it should be noticed that the unsymmetrical lock-

ing properties seen experimentally [5] cannot be explained

by assuming a more general tuning network; they can, how-

ever, be accounted for by including a second-order term

aZU2(t) in the nonlinear active element and including mixed

frequencies at 20 and 4ti; in fact, a nonlinear capacitance is

not necessary for obtaining unsymmetrical Iock}ng proper-

ties. Another possible explanation is the use of a nonideal

dc source (i.e., a de-bias circuit having R#O). These prob-

lems will be dealt within [14].

IV. LOCKING TO THE THIRD SUBHARMONIC: BROAD-BAND

PROPERTIES OF THE ACTIVE ELEMENT

We have so far employed a rather special nonlinear de-

vice. Generally,

( d) dzv dnv
i(t)=j 71, —) —)... > ——

dt dt’ dtn )

which gives rise to frequency dependent conductance and

capacitances (in case the model should include nonlinear in-

ductances, integrals of v should be introduced into the argu-

ment of ~). After a series expansion of i(t), the describing

functions can be calculated, and thus this general case may

also be dealt with. The frequency dependence of the device
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characteristic is important for the subharmonic locking

properties, and to demonstrate this we will treat here a very

simple case, namely a frequency-dependent linear part of the

conductance and capacitance of the active element, which

is given by the first-order terms in even and odd derivatives,

respectively. Since we treat a linear term no mixing between

frequencies will occur, which means that we can introduce

different linear conductance and capacitances onto and 3u.

At 3U we assume al and C as before and at ~:

al(u) = CYGL and C(LO) = 7C (28)

where a and ~ describe the frequency dependence (the

capacitance of both the active element itself and of the

tuning circuit are incorporated into C).

If we insert this into the describing functions for 30J and

co, assuming bz= O (i.e., neglecting the nonlinear capacitance),

vie find that the only change is in Al, which now is given by

31

3+ GHz 10 GHz

conductance mmho =–0,1 =–09
susceptance mrnho =–25 = 2.5

If we want gO=2, we must choose GL =0.45. 10–3 and we

then obtain QO= 5.6. From the above table we calculate

o!=–O.2andy=–30.

If we insert these values into (30) we see that the locking

bandwidth is about 2 percent of that obtained for a cu-cuit

where the small signal parameters are considered to be con-

stant.

This figure could of course be increased by using a tuning

circuit with a capacitance that dominated over the device

capacitance, but this would be of no value since the Q. value

of the oscillator would also increase, and therefore the locking

bandwidth would decrease.

The frequency dependence of the device parameters is of

Al = ———

GLQ;fi/l+:;(F:;y(2go +a. 1)

and hence the locking bandwidth will be

(29)

(30)

of that obtained for a frequency-independent conductance little importance for the fundamental locking properties, and

and capacitance. Fig. 2 shows the change in normalized lock- this is a basic difference between fundamental and subhar.

ing bandwidth as a function of a for two different QO monic phase locking. I t should also be noted that the charac-

values with ~ = 1 and go= 2. Fig. 3 shows the normalized teristics of the circulator are likely not to be the same at a as

locking bandwidth versus y with a as a parameter (Qo= 10 at 30J. These differences could be treated in a way analogous

and go= 2). Figs. 2 and 3 show that the frequency dependence to the above; as a matter of fact, the frequency changes in

of the admittance of the active element can change the lock- both the circulator and the active element can be incor-

ing bandwidth considerably. In order to calculate the largest porated into the a and ~ parameters introduced in (28).

possible consequences that this frequency dependence can

have, we assume for the remainder of this section that the V. LOCKING TO THE THIRD SUBHARMONIC:

tuning circuit is purely inductive. As a practical example we THE DOUBLE-TUNED OSCILLATOR

take an IMPATT diode that has a small signal admittance given The single-tuned oscillator treated in Sections III and IV

in the Read approximation as [15] is of course the simplest possible oscillator. We will now in-

l– Cos od 1

(

1“
Lllc~ + jdc. 1 – ——— ~:d~

Od 1 – d/oJa~ 1 – rJ/%2 )
——— —~,”, . ————

1

(

1
1 + -~.—— ——

COS od

– ed sin e~
od~ 1 – &/m.~ 1 — u2/u7 — T“— ti~/u.2 )

(31)

where w is the avalanche frequency, & is the drift angle, and

cd is the geometrical capacitance of the drift region. Assum-

ing 6d(3@) =Tl 3CO= 1.2 CW,and g0=2, we find a= 7.5, ?=0.44,

and a locking bandwidth 67 percent of that obtained using a

frequency-independent device admittance.

As another even more striking example, we can extra-

polate slightly the measurements of the small signal parame-

ters for a p-i-n diode, made by Josenhans and Misawa [16]1

to yield the following:

1 The extrapolations were made from curves published in Micr’owaw

Scmicowducto? Devices and Theiv Cit’cuit itpplicatiom’, H. A. Watson, Ed.

New York: McGraw-Hill, 1968.

_

vestigate the advantage in locking properties that can be ob-

tained by shaping the linear tuning circuit. We will employ

a double-tuned circuit, resonant close to u as well as close to

30J (see Fig. 4). For the purpose of this section it is advan-

tageous to use the simplest possible nonlinear active element,

as defined in (6).

For small deviations from the free-running frequency we

have

GLTU(QJ) + Tzz(~) = GLT1z(3u) + TM(3LO) = 1 (32a)

GLT1l(w) + T~l(LJJ) = G. + j(ticl – l/c&) (32b)

GLTI,(30J) + ~j~(30) = GL + j(3coC3 – l/3tiL3) (32c)
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K
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o~w
-20246810

Fig.2. Normalized locking bandvridth Kversus a;ais defined by (28)
and Kby (30). a describes the frequency dependence of thelinear part
of the device conductance. A frequency-independent linear capaci-
tance (Y=l) and gO=2 were assumed.

Fig. 3. Normalized locking bandwidth Kversusy for two
a values: QO=l Oand g0=2.

L—A————c

Fig. 4. Double-tuue dcircui tom?= l/LICl; 32q02=l/&Ca.

where

Furthermore, we have to observe that in order to avoid

hopping effects or multiple-frequency oscillations, the circuit

should be passi}~e at the frequency. since a practical device

often has a frequency-dependent negative conductance (com-

pare an IMPATT diode) this is a fair assumption. Note that

fora single-tuned oscillator we did not have to make this as-

sumption since the linear network anyhow strongly damped

any oscillations on the frequency ~. For simplicity we assume

3rd
AUmax . ~

I

A UJ~axfun plo
02

005

-1 012345 a

Fig. 5, Subharmonic locking bandwidth (third subharmonic) for a

~ double-tuned circuit divided by fundamental locking bandwidth

~ versus a assuming the same amount Of injected power in the two

F

cases. The curve shown is normalized by (Z’in/Po). Furthermore,
go= 2 was assumed.

that the conductance of the active element on frequency CJ is

CXGL (rx> -1).

If we assume ~1<<~30 we find k the same waY as before

that

1.
A, =

G~(2go – 1 + a)
(33)

and that cos 9= 1, i.e., 19=0° in this case (compare sin 0= — 1

for the single-tuned circuit). AI given by (33) may be inserted

directly into (21) setting bz= O. A more accurate expression

than (19) for Al in a single-tuned oscillator, with al replaced

by aG~, is the following:

“=@x’+(6!x3i’g1)211’2 ‘“c)

where we have chosen b2= O.

We find from (21) by comparing (33) with (19c) that

::le’”ne’=[(2gJ+lr
A@ single tuned

. — (34)
~0 max

Equation (34) shows the gain in locking bandwidth ob-

tained with a double-tuned circuit. It is seen that the larger

the passive conductance at the subharmonic frequency (i.e.,

the larger a), the smaller the gain.

It is obvious that a double-tuned circuit increases the
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locking bandwidth appreciably at subharmonic locking for a

given injected power Pi..
It is also interesting to compare locking to the third sub-

harmonic through a double-tuned circuit with fundamental

locking, assuming the same amount of injected power in the

two cases. From (27) and (33), (21) and (15), respectively, we

obtain, with bz= O,

AOJm.X3rd‘“b 4(gll – 1) Pin3rd 3/2

——. .

Aum%xf”n ()3(2go + a – 1)3 Po

“( )Po 1/2

(35)
p,nfun

where

(P,n3rd/Po) 312(P0/P,nf”n) 1/’ = $:

if the same amount of injected power is assumed in the two

cases. Equation (35) is illustrated in Fig. 5.

VI. LOCKING TO THE nTH SUBHARMONIC

The basic properties of subharmonic locking which were

discussed in the preceding sections for the case n = 3 also

hold for n> 3; they are only more pronounced.

Assuming an active element obeying the relation

i(t) = jj a~vk(t)
k-l

(36)

and assuming

v(t) = A 1 sin (d + 41) + An sin fttit (37)

we employ the binomial theorem and the formulas for expan-

sion of sin” x and Cosn x [17] to find the describing functions

VII. STABILITY CONSIDERATIONS

Stability without restrictions regarding frequency devia-

tion and injected power can be investigated in a way similar

to that discussed for fundamental locking in [8], but with

much greater numerical difficulties.

Here we will discuss stability for a case with small fre-

quency deviation and small injected power; the oscillator is

locked with the nth subharmonic. We first assume that a

stationary solution is given by

Nn+GL+j2$:=o. (40)

We introduce the notation C)O for n~l for this stationary

solution. We then perturb the solution slightly so that at

t= O we have@ =&+AI$. If we introduce this phase into (40)

we will get an equation, the real part of which is almost

identically the same as when ~ =~o, but with an imaginary

part that is substantially changed. We easily find the dif-

ference in the imaginary part, to the first approximation, in-

troduced by AI#I to be given by

8AI#I — an .4 In

dt =
— COO(– 1){ ’–’)/2 cos @oA@. (41)

2’–~QuGL .4.

If the original solution of (40) is to be stable, then evidently

the perturbation is to decrease with time, and thus dA@/13t has

to have the opposite sign of Ad. This leads to the condition

(–1)(’-’)/’ Cos +0 >0 (42)

for a stable solution, i.e.,

(43)

—

For small injected power, i.e., Al small, we need to retain

terms in N. containing A 1 up to the second order only, plus

the last term, since this is the only complex term, the balanc-

ing term when nu#cm.

It is to be noted that if an= O, no locking takes place unless

frequency components in u(t) other than w and ti~ are in-

cluded in the analysis, introducing other complex terms in

N.. This locking mechanism is, however, extremely inefficient

unless multiple-tuned circuits (e.g., resonant for co, 3w, and

9u, if n =9) are used, and this possibility may therefore be

neglected.

Expressions for maximum locking bandwidth, etc., can

be obt~ined in much the same way as for the case n =3.

{or n = 3, and

for 12=5.

Subharmonic

multiplication of

––r”< do <: (44)

VIII. CONCLUSIONS

injection locking is attractive since up-

the locking signal can be reduced in order

or even avoided. There are, however, (as shown in this paper)

basic differences between fundamental and subharmonic in-

jection locking that make the latter less efficient. This makes

subharmonic locking feasible for applications where band-
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width is of little importance. The possibility of shifting the

free-running frequency (through varactor tuning) in ap-

proximate synchronization with the change in frequency of

the injected signal has not been investigated for subharmonic

injection locking in this paper; with such a method, injection

locking would provide only a part of the locking mechanism

and locking bandwidth could be increased. The theory pre-

sented in this paper would be valid for that part of the

locking that can be attributed to injection locking.
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Microstrip Dispersion Model

WILLIAM J. G13TSINGER

Abstract—The assumption that the quasi-TEM mode on micro- L’
strip is primarily a single longitudinal-section electric (LSE) mode
leads to a transmission line model whose dispersion behavior can be
analyzed and related to that of rnicrostrip. Appropriate approxima-

Zf

tions yield simple, closed-form expressions that allow slide-rule
prediction of microstrip dispersion. Zo

NOMENCLATURE
Y

a. a’. b. bf. s, w Mechanical dimensions of conventional,.. .
k

c

c’

D

f

.fi

f,
G

kn

,— ~ \microstrip and the LSE mode model (Fig. 2). ~.

~ ~ Speed of light in free space= 11.8 in/ns.

Capacitance per unit length of rnicrostrip -y.

line at zero frequency.

Width of the zero-frequency parallel-plate ~.

microstrip equivalent structure.

Frequency. e,{

Frequency of inflection of the dispersion

curve. C,o
Parameter of the dispersion function.

Empirical parameter used to simplify the e.

microstrip dispersion function.

Free-space wavenumber. G

7.
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Inductance per unit length of microstrip line

at zero frequency.

Microstrip characteristic impedance at fre-

quency j.

Microstrip characteristic impedance at zero

frequency.

Propagation constant along the microstrip

line.

Transverse propagation constant in the air-

filled part of the microstrip model.

Transverse propagation constant in the di-
electric-filled part of the microstrip model.

kflicrostri~ effective dielectric constant (a

function ~f frequency).

Microstrip effective dielectric constant at

the inflection point.

Microstrip effective dielectric constant at

zero frequency.

Permittivity of free space= 8.85 X 10–12

F/m.

Substrate relative dielectric constant.

Impedance of free space= 376.7 fl.

Permeability of free space= 31.92 nH/in, or

4-z-xl&7 H/m.

Radian frequency.


